16,999 research outputs found

    Why Health and Social Care Support for People with Long-Term Conditions Should be Oriented Towards Enabling Them to Live Well

    Get PDF
    This research was funded by The Health Foundation (a charity working to improve the quality of healthcare in the UK) via (a) a commission on conceptualising collaborative care, (b) an Open Insight initiative project on re-conceptualising support for self-management (reference 7209), and (c) a contribution towards salary funding for Alan Cribb. At the University of Aberdeen, Vikki Entwistle works within the Health Services Research Unit, which is core funded by the Chief Scientist Office of the Scottish Government’s Health and Social Care Directorates. Health Foundation and Scottish Government staff are among those who have participated in knowledge exchange events related to the two projects. The views expressed in the paper are those of the authors and are not necessarily shared by funders or workshop participants. The authors accept full responsibility for this paper. Open access via Springer Compact AgreementPeer reviewedPublisher PD

    Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass

    Get PDF
    We use the third perihelion pass by the Ulysses spacecraft to illustrate and investigate the “flux excess” effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the potential effects of small-scale structure in the heliospheric field (giving fluctuations in the radial component on timescales smaller than 1 h) and kinematic time-of-flight effects of longitudinal structure in the solar wind flow. We show that the flux excess is explained by neither very small-scale structure (timescales 1 day) solar wind speed variations on the frozen-in heliospheric field. We show that averaging over an interval T (that is long enough to eliminate structure originating in the heliosphere yet small enough to avoid cancelling opposite polarity radial field that originates from genuine sector structure in the coronal source field) is only an approximately valid way of allowing for these effects and does not adequately explain or account for differences between the streamer belt and the polar coronal holes

    Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects

    Get PDF
    We investigate the “flux excess” effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the kinematic effect on these open solar flux estimates of large-scale longitudinal structure in the solar wind flow, with particular emphasis on correcting estimates made using data from near-Earth satellites. We show that scatter, but no net bias, is introduced by the kinematic “bunching effect” on sampling and that this is true for both compression and rarefaction regions. The observed flux excesses, as a function of heliocentric distance, are shown to be consistent with open solar flux estimates from solar magnetograms made using the potential field source surface method and are well explained by the kinematic effect of solar wind speed variations on the frozen-in heliospheric field. Applying this kinematic correction to the Omni-2 interplanetary data set shows that the open solar flux at solar minimum fell from an annual mean of 3.82 × 1016 Wb in 1987 to close to half that value (1.98 × 1016 Wb) in 2007, making the fall in the minimum value over the last two solar cycles considerably faster than the rise inferred from geomagnetic activity observations over four solar cycles in the first half of the 20th century

    An adaptive, hanging-node, discontinuous isogeometric analysis method for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation

    Get PDF
    In this paper a discontinuous, hanging-node, isogeometric analysis (IGA) method is developed and applied to the first-order form of the neutron transport equation with a discrete ordinate (SN) angular discretisation in two-dimensional space. The complexities involved in upwinding across curved element boundaries that contain hanging-nodes have been addressed to ensure that the scheme remains conservative. A robust algorithm for cycle-breaking has also been introduced in order to develop a unique sweep ordering of the elements for each discrete ordinates direction. The convergence rate of the scheme has been verified using the method of manufactured solutions (MMS) with a smooth solution. Heuristic error indicators have been used to drive an adaptive mesh refinement (AMR) algorithm to take advantage of the hanging-node discretisation. The effectiveness of this method is demonstrated for three test cases. The first is a homogeneous square in a vacuum with varying mean free path and a prescribed extraneous unit source. The second test case is a radiation shielding problem and the third is a 3×3 “supercell” featuring a burnable absorber. In the final test case, comparisons are made to the discontinuous Galerkin finite element method (DGFEM) using both straight-sided and curved quadratic finite elements

    Electron omnidirectional intensity contours in the earth's outer radiation zone at the magnetic equator

    Get PDF
    Omnidirectional electron intensities in the outer belt at earths magnetic equato

    MARVEL analysis of the measured high-resolution rovibronic spectra of the calcium monohydroxide radical (CaOH)

    Full text link
    The calcium monohydroxide radical (CaOH) is an important astrophysical molecule relevant to cool stars and rocky exoplanets, amongst other astronomical environments. Here, we present a consistent set of highly accurate rovibronic (rotation-vibration-electronic) energy levels for the five lowest electronic states (\tilde{X}\,^2\Sigma^+, \tilde{A}\,^2\Pi, \tilde{B}\,^2\Sigma^+, \tilde{C}\,^2\Delta, \tilde{D}\,^2\Sigma^+) of CaOH. A comprehensive analysis of the published spectroscopic literature on this system has allowed 1955 energy levels to be determined from 3204 rovibronic experimental transitions, all with unique quantum number labelling and measurement uncertainties. The dataset covers rotational excitation up to J=62.5J=62.5 for molecular states below 29\,000~cm1^{-1}. The analysis was performed using the MARVEL algorithm, which is a robust procedure based on the theory of spectroscopic networks. The dataset provided will significantly aid future interstellar, circumstellar and atmospheric detections of CaOH, as well as assisting in the design of efficient laser cooling schemes in ultracold molecule research and precision tests of fundamental physics
    corecore